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Studies of Feshbach resonance phenomena in fermionic alkali gases have drawn heavily on the
intuition afforded by a Fermi-Bose theory which presents the Feshbach molecule as a featureless
Bose particle. While this model may provide a suitable platform to explore the 6Li system, we argue
that its application to 40K, where the hyperfine structure is inverted, is inappropriate. Introducing
a three-state Fermi model, where a spin state is shared by the open and closed channel states, we
show that effects of “Pauli blocking” are recorded in the internal structure of the condensate wave
function.

PACS numbers: 03.75.Hh,03.75.Ss,05.30.Fk

Fermionic alkali atomic gases present a unique environ-
ment in which to control and explore the crossover be-
tween BCS and Bose-Einstein condensation (BEC) [1, 2].
Already the creation of a molecular BEC phase from a de-
generate Fermi gas of atoms has been reported by several
experimental groups [3], while studies of fermionic pair
condensation in the crossover regime are under way [4].
The facility to control the strength of the atomic pair
interaction in the Fermi system relies on a magnetically-
tuned Feshbach resonance (FR) phenomena involving the
multiple scattering of atoms from open channel states
into a molecular bound state formed from neighboring
closed channel states. Current theories of the FR treat
the molecular bound state as a featureless bosonic par-
ticle, and characterize the total system by a Fermi-Bose
theory [5] familiar from studies of polariton condensa-
tion [6] as well as models of bipolaronic superconductiv-
ity [7]. While the Feshbach molecule (FM) involves spin
states different from the scattering states, the molecular
boson can be regarded as distinct. However, if a spin
state is shared, the validity of the Fermi-Bose theory as
a microscopic model of the FR is called into question [8].

At the atomic level, the 40K system differs markedly
from 6Li. To understand why, let us consider the Hamil-
tonian of a single fermionic alkali atom of integer nuclear
spin I and electron spin s = 1

2
:

Ĥatom = A s · I + B ·
(

2 µe s− µn I
)

. (1)

Here A denotes the strength of the hyperfine interac-
tion and B the magnetic field, while µe and µn denote
the electron and nuclear magnetic moments respectively.
Since the Hamiltonian preserves the quantum number
mF = ms + mI , its matrix elements can be grouped
into blocks involving basis states |mI , ms = 1

2
〉 and

|mI + 1, ms = − 1

2
〉. Therefore, while a generic value of

mF is characterized by two eigenstates, for states of high-
est weight (|mF | = Fmax) there exists only one. In the
6Li system (I = 1), the hyperfine interaction is positive,
and the lowest energy states form a doublet with total
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FIG. 1: Atomic states involved in the FR for (a) 6Li and (b)
40K. Both Fermi gases are initially prepared in the two lowest
eigenstates. The hyperfine couplings between states allowed
by the selection rules are represented by dotted lines. In 6Li,
the FM is formed from the F = 3/2 states while, in 40K, it is
formed from | 7

2
,− 7

2
〉 and the lowest eigenstate | 9

2
,− 9

2
〉.

spin F = 1

2
. By contrast, in the 40K system (I = 4),

the hyperfine interaction is negative and the hyperfine
structure is inverted such that the lowest eigenstate is
the one of highest weight, viz. Fmax = −mF = 9

2
[9].

Now, if we ignore inelastic collisions or interactions that
involve spin-flips, the interatomic interaction is specified
by a two-body potential that depends only on the elec-
tron spin:

V (r1 − r2) = Vc(r1 − r2) + Vs(r1 − r2) s1 · s2 . (2)

Expressed in the basis of spin states |F, mF 〉, the inter-
action couples states with the same mF . Therefore, in
the 6Li system, the interaction provides a mechanism to
affect a FR through the coupling of the lowest two F = 1

2

(open channel) states to the higher energy bound state
formed from the F = 3

2
, mF = ± 1

2
(closed channel)

states (Fig. 1a). By contrast, of the two states |9
2
,− 9

2
〉

and | 9
2
,− 7

2
〉 that constitute the open channel in 40K, only

the latter may couple to the neighboring | 7
2
,− 7

2
〉 state

(Fig. 1b). For an s-wave interaction, the FM involves a
hybridization of states | 9

2
,− 9

2
〉 and | 7

2
,− 7

2
〉 which com-

petes with the pairing of the scattering states |9
2
,− 9

2
〉



2

and |9
2
,− 7

2
〉. The aim of the present paper is to explore

the integrity of FR phenomena in the three-state Fermi
system and assess the extent to which the nature of the
bound state impinges on the mean-field characteristics of
the system.

Although, in the three-state basis, the majority of ma-
trix elements of the two-body pair interaction (2) remain
non-zero, the low-energy properties of the system may
be characterized by just a subset of elements. Labelling
the spin states | 9

2
,− 7

2
〉, | 7

2
,− 7

2
〉 and |9

2
,− 9

2
〉 by indices

i = 1, 2 and 3 respectively, the FM is created by the
direct density interaction U between species 2 and 3. At
the same time, the exchange contribution g, which allows
a transfer of particles between states 1 and 2, induces an
effective pair interaction in the open channel. As such,
any direct density interaction between species 1 and 3
can be subsumed into this contribution. Therefore, at
its simplest level, the FR of the three-state Fermi system
can be modelled by the Hamiltonian,

Ĥ −
3

∑

i=1

µiN̂i =
∑

ki

(ǫki − µi) a†
kiaki (3)

+
∑

k,k′,q

Uq a†
k2

a†
k′3

ak′−q3ak+q2

+
∑

k,k′,q

[

gq a†
k1

a†
k′3

ak′−q3ak+q2 + h.c.
]

,

where the operator aki indexes species i, N̂i =
∑

k a†
kiaki

and, defining Ei as the corresponding eigenvalue of the
atomic interaction (1), ǫki = ~

2
k

2/2m + Ei. Since the
system is not in chemical equilibrium, and the Hamil-
tonian separately conserves the particle number N3 and
N1 +N2, the free energy is characterized by two chemical
potentials µ3 and µ1 = µ2 ≡ µ12. Anticipating that the
coupled system is prepared with a roughly equal popu-
lation of open channel states, we will use the chemical
potentials to impose the condition N1 +N2 = N3 ≡ N/2.
Without loss of generality, one can absorb E1 and E3

into a redefinition of the respective chemical potentials,
while the detuning E2 ≡ ν > 0 can be used to adjust the
relative energy level separation of state 2. Finally, for
simplicity, we consider the case where gq = γUq.

In the following, we will present the results of a numer-
ical mean-field analysis of the Hamiltonian (3) across the
FR . However, before doing so, it will be instructive to
anticipate some qualitative aspects of the phenomenology
that emerge from the numerics. In contrast to the Fermi-
Bose model, the FR Hamiltonian (3) is complicated by
the three-fermion character of the system, but the bare
interaction of particles in the open channel can still be
enhanced by the formation of a two-body resonance out
of the three-state basis. In practice, this is achieved by
affecting an ‘optimal’ rearrangement of the basis states
wherein, by exploiting the exchange interaction, states 1
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FIG. 2: (Color online) Phase diagram of the FR Hamilto-
nian (3). The solid line shows the boundary separating the
BEC and BCS-like phases in the dilute system as inferred
from the variational analysis (5) with u0 ≡ U0N(E0) = 3.76.
The points marked on the curve are obtained from the numeri-
cal mean-field analysis in the limit of low density and, in order
of increasing γ, they correspond to the ratios N1/N3 ≃ 0, 30,
73, and 90%, respectively. The intersection of the curve with
the ν-axis translates into the binding energy of the molecular
state associated with the bare potential Uq. The density dis-
tributions displayed in Fig. 4 are drawn from the range shown
by crosses at γ = 0.1. Inset: The dependence of the scattering
length a on the detuning ν, as inferred from the numerics, can
be well-approximated by the relation (kF a)E0/(νc − ν) ≃ 35.

and 2 hybridize into the orthogonal combination,

b†k1′ =cosφka†
k1

+ sin φka†
k2

,

b†k2′ = − sin φka†
k1

+ cosφka†
k2

,

such that the condensation energy associated with the
pairing of states 1′ and 3 is maximized. In this case, im-
posing the particle number constraint, one can propose
the variational Ansatz for the ground state wave func-
tion,

|Φ〉 =
∏

k

[

cos θk + sin θk a†
k3

b†−k1′

]

|0〉 , (4)

the integrity of which is supported by the numerical anal-
ysis below. Here, θk encodes the overall strength of the
condensate while φk defines its distribution between the
two pairing channels: since the open channel state 3 par-
ticipates in both condensate fractions, 〈a3a1〉 and 〈a3a2〉,
there is an inherent frustration due to Pauli exclusion not
present in the Fermi-Bose system. Since the exchange in-
teraction contributes indirectly to pair formation, the hy-
bridization (as reflected through φk) will, itself, depend
on the strength of the condensate. To maintain contact
with the physical system, we will hereafter limit our con-
siderations to situations in which the Fermi energy of
the unperturbed system, ǫF = ~

2k2
F /2m, lies far enough



3

below ν that the auxiliary state 2′ remains unpopulated
in the ground state. In this case, the particle number
constraint translates to the condition µ12 = µ3 ≡ µ.

Considerable insight can be gained from analytical so-
lutions of the variational mean-field equations in the
dilute (BEC) and dense (BCS) limits (cf. Ref. [1]).
When characterized by a local contact potential U(r) =
−U0L

3δ(r), such an analysis reveals a phase diagram
characterized by three dimensionless parameters, u0 ≡
U0N(E0), γ and ν/E0 where E0 = ~

2k2
0/2m represents

the UV cut-off set by the range of the interaction 1/k0,
and N(ǫ) denotes the density of states. At low densities
ǫF → 0, the system develops a molecular bound state
and enters a BEC phase when ν < νc where, defining
f(z) = 1 −√

z arctan(1/
√

z),

f(
νc

2E0

) =
1

u0(γ2u0 + 1)
, (5)

(see Fig. 2). In particular, one may note that the ex-
change contribution γ enhances the bare interaction u0

expanding the domain of the BEC phase while, in the ab-
sence of a direct interaction, u0 = 0, the exchange can,
by itself, induce pairing in the open channel.

Defining the anomalous (normal) density, κk,ji =

〈Φ|a−kiakj |Φ〉 (ρk,ji = 〈Φ|a†
kiakj |Φ〉), when deep within

the BEC phase ν ≪ νc, a linearization of the variational
equations shows that the total condensate wave function
involves the coherent superposition of components

κk,13 =
1

2
sin 2θk cosφk ≃ α∆13

2(ǫk1 − µ)
(6)

κk,23 =
1

2
sin 2θk sinφk ≃ (α−1 + γ−1)α∆13

2(ǫk1 − µ) + ν
,

where, to leading order, the condensate order param-
eter ∆13 = γU0

∑k0

k κk,13 (and the partner ∆23 =

U0

∑k0

k κk,23) remain unspecified. Here, for |µ| ≪ ν, the
chemical potential, µ = −|µ| (which asymptotes to half
the molecular bound state energy), is determined by the
self-consistency condition α−1 = γu0f(|µ|/E0) with the
coefficient α ≡ ∆23/∆13 determined by the relation,

1

u0

≃
(

1 +
γ

α

)

f(
ν

2E0

) . (7)

Conversely, deep within the BCS-like phase, for |k| . kF ,
φk ≃ ν−1(α−1+γ−1)α∆13 cot θk ≪ 1 and the condensate
wave function acquires the familiar form

κk,13 ≃ 1

2
sin 2θk ≃ 1

2

α∆13

((ǫk − µ)2 + |α∆13|2)1/2
,

with µ ≃ ǫF , while κk,23 ≃ (φk/2) sin 2θk. For |k| ≫ kF ,
the solution converges to the low-density asymptotic (6).
Once again, with ǫF ≪ ν, α is determined by (7) while

∆13 =
8ǫF

e2
exp

[

−
√

E0

ǫF

(

1

αγu0

− 1

)

]

.
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FIG. 3: (Color online) Spectrum of the parent (1, 2) and
hybrid (1′, 2′) states as inferred from the numerical analysis
for ν/E0 = 1.53, u0 = 3.76 and γ = 0.1.

From the variational analysis, two striking features
emerge: firstly, in both BEC and BCS-like phases, the
condensate wave function is characterized by two length
scales. Deep within the BEC regime, the FM has a size
k0ξ23 = [E0/(ν/2 + |µ|)]1/2 while that of the molecule
formed from open channel states, k0ξ13 = (E0/|µ|)1/2, di-
verges at the crossover. In the BCS-like phase, the FM is
increased in size k0ξ23 = [E0/(ν/2 − ǫF )]1/2, while the
range of the Cooper pair of open channel states is set by
the coherence length ξ13 = vF /|α∆13|. Secondly, in the
BCS-like phase, Pauli exclusion has the effect of substan-
tially depleting the normal density ρk,22 = sin2 θk sin2 φk

and, with it, the condensate fraction κk,23 in the range
|k| < kF . Both features are clearly visible in the numer-
ically inferred density distributions below (Fig. 4).

With this background, let us turn to the results of the
numerical mean-field analysis. Specifically, the ground
state wave function |Φ〉 of the three-state Fermi system is
determined by minimizing the free energy 〈Φ|Ĥ −µN̂ |Φ〉
using a generalized Bogoliubov-Valatin transformation
aki =

∑3

j=1
(uk,ijβkj + v∗k,ijβ

†
−kj). Here, we take the

most general Ansatz for the ground state wave func-
tion compatible with the formation of a condensate, i.e.
all elements of the matrix coefficients uk and vk are al-
lowed to acquire non-zero expectation values. For con-
venience, we choose a model potential Uq that possesses
only one bound state (although, in the quasi-equilibrium
system, the presence of multiple bound states will not
change the conclusions qualitatively). We set U(r) =
−U0 exp [−(k0r)

2/2], where the range of the pair inter-
action is chosen to be much smaller than the average
particle separation, viz. N/(k0L)3 ≪ 1.

The numerical procedure involves the minimization
of the free energy with respect to the normal and
anomalous densities, ρk,ji =

∑

m v∗k,jmvk,im and κk,ji =
∑

m v∗k,jmuk,im where, in the s-wave approximation, the
Bogoliubov matrix coefficients uk and vk, as well as the
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FIG. 4: (Color online) Density distribution of (a) ρk,33 and
(b) κk,13 and κk,23 for the range of scattering lengths (kF a)−1

shown by the crosses in Fig. 2. At k = 0, we have κ13 > κ23.
The inset in (a) shows the ratio of particles N1/N3 in the
ground state as a function of the scattering length (kF a)−1.
Note that the relative weight of the 1 state on the ‘BCS
side’ of the resonance increases dramatically from 30% at the
crossover to almost 100% as (kF a)−1 → −∞. Figure (b) inset
shows the condensate fractions ∆13 and ∆23 as a function of
the scattering length (kF a)−1.

densities, depend only on k ≡ |k|. We obtain non-
zero values of the off-diagonal component of the density
matrix ρk,12 which is consistent with the hybrid char-
acter of the ground state, while the observed relations
〈Φ|b†k1′bk1′ |Φ〉 = ρk,33 and 〈Φ|b†k2′bk2′ |Φ〉 = 0 confirm the
validity of the particular variational Ansatz (4). Isolat-
ing the φk-dependence alone, the hybridization effected
by the exchange interaction is visible in the dispersion re-
lation for states 1′ and 2′ (see Fig. 3). Note that, for wave
vectors k & kF , the exchange makes the admixture of 2
states profitable while, for k ≪ kF , where the exclusion is
active, the hybrid states collapse to the parent states. For
completeness, we note that, once ǫF becomes comparable
with the detuning, the population of level 2′ requires an
adjustment of the chemical potentials µ12 6= µ3 to com-
ply with the particle number constraint. In this range,
the ground state is eventually no longer encompassed by
the reduced variational Ansatz (4).

The nature of the ground state can be characterized by
monitoring the normal density ρk,33 and the components

of the condensate wave function κk,23, κk,13. As in single-
channel theories involving only two species of fermions,
the momentum distribution interpolates smoothly from
a BCS-like distribution at (kF a)−1 ≪ −1 to a molecu-
lar condensate wave function in the BEC regime when
(kF a)−1 ≫ 1, where (kF a)−1 denotes the (inverse) scat-
tering length (Fig. 4a). As expected from the variational
analysis, a key feature of the condensate wave function
is the presence of a robust tail at high momenta which
persists into the BCS-like phase (Fig. 4b). (Note that, to
infer the total occupation density, the distribution must
be weighted by the density of states ∼ k2 leading to a
significant amplification of the tail.) The existence of
two correlation lengths and the effects of exclusion are
also emphasized in the variation of the condensate wave
function.

In summary, we have shown that the FR in the 40K sys-
tem involves a three-state Fermi Hamiltonian. Of course,
while the FM remains only sparsely populated, the char-
acter of the mean-field ground state shows few qualita-
tive differences from a single-channel theory, as would
a Fermi-Bose model in that limit. However, when the
FM population is significant, the development of weight
in both (1, 3) and (2, 3) fractions is revealed in the ap-
pearance of two length scales in the internal condensate
wave function. The existence of “Pauli blocking” discrim-
inates this behavior from that of a Fermi-Bose model. We
expect signatures of the internal structure of the compos-
ite wave function will appear in both the collective mode
response of the condensate and in the dynamics of con-
densate formation [4].
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